
Title: A Mechanism and Method for Synthesis of a 2D Gamma-ray Pinhole Projection Image from a Plurality of Slit Projection Images

Invention: This is a 3D medical imaging technique that incorporates single photon emission computed tomography (SPECT) to image radioisotope distributions, which are generally used to detect/monitor cancer, drug delivery, etc. This imaging technique uses SPECT to take 2D and 3D tomographic images of radioisotope distributions, both of which can be analyzed separately at high resolution. In addition, the 2D data can be recovered, analyzed and sorted into groups by the angles where the images were taken. This technique can be used in preclinical and clinical subjects.

Background: SPECT technology is critical in diagnosing varieties of cancer, studying drug delivery, and testing to cardiac perfusion. Unfortunately, current SPECT images contain high Poisson noise due to the low-photon collection efficacy of current pinhole collimators and pinhole apertures. In order to address this issue, inventors from the University of Arizona devised this technology, which incorporates a basic detector/collimator/pinhole combination to take images. The novelty lies in the optical setup, which is rotatable, allowing the system to take multiple images of a region of interest at different angles while the device itself remains stationary. Software is then used to process the images and ultimately produce a 3D image.

Applications:

- Cancer research and diagnosis
- Hospitals, clinics, and other medical imaging labs

Advantages:

- Maintains high resolution without compromising field of view

Contact Rakhi Gibbons
Asst. Director, Life Sciences
rakhig@tla.arizona.edu
(520) 626-6695
• Stationary and rotatable, allowing the system to take multiple images at different angles
• Processes 2D images to construct a 3D image

Licensing Manager:
Rakhi Gibbons
RakhiG@tl.a.arizona.edu
(520) 626-6695

Inventors
Lars Furenlid
Professor, Radiology

Xin Li
Graduate Student, Optical Science