Improved Fused Filament Deposition 3D Printing Using Filaments Coated With Thermoreversible Thermosets

UA ID Technology #ua18-236

Title: Improved Fused Filament Deposition 3D Printing Using Filaments Coated with Thermoreversible Thermosets

Invention: This invention demonstrates a new polymer to coat the spool of thermoplastic filament used in fused deposition modeling (FDM) 3D printing with a thermoreversible thermoset. The goal is to provide a layer that will liquefy in the hot printer nozzle to produce a lower viscosity liquid polymer. This coats the melted filament and increases the wetting and adhesion between layers, ultimately creating a stronger end product that will hold together well.

Background: FDM 3D printing is the most common 3D printing technique. In FDM printing, a spool of thermoplastic filament is used and placed in continuous layers. However, a huge problem that remains unsolved is the poor wetting and increased porosity between layers, which results in a weak final product.

Applications:
- FDM 3D Printing

Advantages:
- Limits the deformation of the 3D structure by alleviating poor adhesion
- Limits residual, hazardous organic solvents, making an environmentally friendly product

Licensing Manager:
Bob Sleeper
Rebrisc@tla.arizona.edu
(520) 626-4604

The University of Arizona, Tucson, Arizona
(520) 626-4604

Inventors

Barrett Potter, Jr.
Professor, Materials Science & Engineering

Krishna Muralidharan
Associate Professor, Materials Science & Engineering

Piaoran Ye
Graduate Assistant, Teaching, Chemistry and Biochemistry

Douglas Loy
Professor, 20 Materials Science & Engineering