Silicone Waveguide for Solar Applications With High Concentration

Title: Silicone waveguide for solar applications with high concentration

Invention: Researchers at the University of Arizona have developed low-cost silicone-based optical light guides configured to concentrate sunlight onto photovoltaic cells with above 90% optical efficiency. The fabrication is inexpensive, affords flexibility, and ease of assembly. Integration of multiple light guides enjoys relaxed alignment tolerances compared to glass.

Background: In solar applications, waveguides and/or lightguides are often used to redirect and spatially concentrate the sunlight onto photovoltaic cell (PV-cells). Glass lightguides can be utilized, but can be expensive and complex to fabricate, especially when small geometrical features are required. Assembly of a plurality of glass-based lightguides into a full system is also tedious and complicated. Polymeric materials can address some of these issues, are well known to have a relatively high level of absorbance in the UV and NIR regions of the solar spectrum, when high transmittance is needed.

Applications:

• Solar Applications

Advantages:

• Transparent in the 300-1700nm region
• UV resistant
• Design flexibility
• Reduces the cost of manufacturing/mass production
• High transmission throughout the solar spectrum

Contact
Amy Phillips
Sr. Licensing Manager
amyp@tla.arizona.edu
(520) 621-9579

The University of Arizona, Tucson, Arizona
• Improved tolerance to misalignment while maintaining over 90% optical efficiency

Licensing Manager: Amy Phillips

AmyP@tla.arizona.edu

Refer to case number UA19-041

Inventors

Kyungjo Kim
Associate research scientist

Robert Norwood
Professor, Optical Sciences

Sifang Cui
Grad Research Asst, Optical Sciences

Liliana Ruiz Diaz
Graduate student, Optical sciences